Evolution moves in mysterious ways. Excretion of waste products by glomerular filtration made perfect sense when life evolved in the ocean. Yet, the associated loss of water and solutes became a problem when life moved onto land: a serious design change was needed and this occurred in the form of ever more powerful tubules that attached to the glomerulus. By reabsorbing typically more than 99% of the glomerular filtrate, the tubules not only minimise urinary losses, but, crucially, also maintain homeostasis: tubular reabsorption and secretion are adjusted so as to maintain an overall balance, in which urine volume and composition matches intake and environmental stressors. A whole orchestra of highly specialised tubular transport proteins is involved in this process and dysfunction of one or more of these results in the so-called kidney tubulopathies, characterised by specific patterns of clinical and biochemical abnormalities. In turn, recognition of these patterns helps establish a specific diagnosis and pinpoints the defective transport pathway. In this review, we will discuss these clinical and biochemical “fingerprints” of tubular disorders of salt-handling and how sodium handling affects volume homeostasis but also handling of other solutes.
CITATION STYLE
Bockenhauer, D., & Kleta, R. (2021). Tubulopathy meets Sherlock Holmes: biochemical fingerprinting of disorders of altered kidney tubular salt handling. Pediatric Nephrology, 36(8), 2553–2561. https://doi.org/10.1007/s00467-021-05098-5
Mendeley helps you to discover research relevant for your work.