This study shows that chitosan (CS) could be highly useful as a coupling agent in phosphate glass fibre/polycaprolactone (PGF/PCL) composites, as it improved the interfacial shear strength by up to 78%. PGFs of the composition 45P2O5-5B2O3-5Na2O-24CaO-10MgO-11Fe2O3 were dip-coated with CS (with a degree of deacetylation > 80%) dissolved in acetic acid solution (2% v/v). Different CS concentrations (3-9 g L-1) and coating processes were investigated. Tensile and fragmentation tests were conducted to obtain the mechanical properties of the single fibres and interfacial properties of the PGF/PCL composites, respectively. It was observed that post-cleaning, the treated fibres had their tensile strength reduced by around 20%; however, the CS-coated fibres experienced strength increases of up to 1.1-11.5%. TGA and SEM analyses were used to confirm the presence of CS on the fibre surface. FTIR, Raman, and X-ray photoelectron spectroscopy (XPS) analyses further confirmed the presence of CS and indicated the protonation of CS amine groups. Moreover, the nitrogen spectrum of XPS demonstrated a minimum threshold of CS coating required to provide an improved interface.
CITATION STYLE
Tan, C., Rudd, C., Parsons, A., Sharmin, N., Zhang, J., Chen, W., & Ahmed, I. (2018). Chitosan as a coupling agent for phosphate glass fibre/polycaprolactone composites. Fibers, 6(4). https://doi.org/10.3390/fib6040097
Mendeley helps you to discover research relevant for your work.