Construction and yield optimization of a cinnamylamine biosynthesis route in Escherichia coli

5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: With the development of metabolic engineering and synthetic biology, the biosynthesis of aromatic compounds has attracted much attention. Cinnamylamine is an aromatic compound derived from l-phenylalanine, which is used in the synthesis of biologically active molecules, including drugs, and energetic materials. Cinnamylamine has been mainly synthesized by chemical methods to date, and few reports have focused on the biosynthesis of cinnamylamine. Therefore, it is desirable to establish an efficient biosynthesis method for cinnamylamine. Results: The ω-aminotransferase Cv-ωTA from Chromobacterium violaceum has been demonstrated to have high enzyme activity in the conversion of cinnamaldehyde to cinnamylamine. To prevent the preferable conversion of cinnamaldehyde to cinnamyl alcohol in wild-type Escherichia coli, the E. coli MG1655 strain with reduced aromatic aldehyde reduction (RARE) in which six aldehyde ketone reductase and alcohol dehydrogenase genes have been knocked out was employed. Then, the carboxylic acid reductase from Neurospora crassa (NcCAR) and phosphopantetheinyl transferase (PPTase) from E. coli were screened for a high conversion rate of cinnamic acid to cinnamaldehyde. To shift the equilibrium of the reaction toward cinnamylamine, saturation mutagenesis of Cv-ωTA at key amino acid residues was performed, and Cv-ωTA Y168G had the highest conversion rate with 88.56 mg/L cinnamylamine obtained after 4 h of fermentation. Finally, by optimizing the substrates and the supply of the cofactors, PLP and NADPH, in the fermentation, the yield of cinnamylamine in engineered E. coli reached 523.15 mg/L. Conclusion: We achieved the first biosynthesis of cinnamylamine using cinnamic acid as the precursor in E. coli using a combinatorial metabolic engineering strategy. This study provides a reference for the biosynthesis of other amine compounds and lays a foundation for the de novo synthesis of cinnamylamine.

Cite

CITATION STYLE

APA

Wang, Q., Ma, L., Wang, Z., Chen, Q., Wang, Q., & Qi, Q. (2022). Construction and yield optimization of a cinnamylamine biosynthesis route in Escherichia coli. Biotechnology for Biofuels and Bioproducts, 15(1). https://doi.org/10.1186/s13068-022-02199-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free