13C MRI of hyperpolarized pyruvate at 120 µT

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nuclear spin hyperpolarization increases the sensitivity of magnetic resonance dramatically, enabling many new applications, including real-time metabolic imaging. Parahydrogen-based signal amplification by reversible exchange (SABRE) was employed to hyperpolarize [1-13C]pyruvate and demonstrate 13C imaging in situ at 120 µT, about twice Earth’s magnetic field, with two different signal amplification by reversible exchange variants: SABRE in shield enables alignment transfer to heteronuclei (SABRE-SHEATH), where hyperpolarization is transferred from parahydrogen to [1-13C]pyruvate at a magnetic field below 1 µT, and low-irradiation generates high tesla (LIGHT-SABRE), where hyperpolarization was prepared at 120 µT, avoiding magnetic field cycling. The 3-dimensional images of a phantom were obtained using a superconducting quantum interference device (SQUID) based magnetic field detector with submillimeter resolution. These 13C images demonstrate the feasibility of low-field 13C metabolic magnetic resonance imaging (MRI) of 50 mM [1-13C]pyruvate hyperpolarized by parahydrogen in reversible exchange imaged at about twice Earth’s magnetic field. Using thermal 13C polarization available at 120 µT, the same experiment would have taken about 300 billion years.

Cite

CITATION STYLE

APA

Kempf, N., Körber, R., Plaumann, M., Pravdivtsev, A. N., Engelmann, J., Boldt, J., … Buckenmaier, K. (2024). 13C MRI of hyperpolarized pyruvate at 120 µT. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-54770-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free