Abstract
A major issue in translation of the artificial intelligence platforms for automatic segmentation of echocardiograms to clinics is their generalizability. The present study introduces and verifies a novel generalizable and efficient fully automatic multi-label segmentation method for four-chamber view echocardiograms based on deep fully convolutional networks (FCNs) and adversarial training. For the first time, we used generative adversarial networks for pixel classification training, a novel method in machine learning not currently used for cardiac imaging, to overcome the generalization problem. The method's performance was validated against manual segmentations as the ground-truth. Furthermore, to verify our method's generalizability in comparison with other existing techniques, we compared our method's performance with a state-of-the-art method on our dataset in addition to an independent dataset of 450 patients from the CAMUS (cardiac acquisitions for multi-structure ultrasound segmentation) challenge. On our test dataset, automatic segmentation of all four chambers achieved a dice metric of 92.1%, 86.3%, 89.6% and 91.4% for LV, RV, LA and RA, respectively. LV volumes' correlation between automatic and manual segmentation were 0.94 and 0.93 for end-diastolic volume and end-systolic volume, respectively. Excellent agreement with chambers' reference contours and significant improvement over previous FCN-based methods suggest that generative adversarial networks for pixel classification training can effectively design generalizable fully automatic FCN-based networks for four-chamber segmentation of echocardiograms even with limited number of training data.
Author supplied keywords
Cite
CITATION STYLE
Arafati, A., Morisawa, D., Avendi, M. R., Amini, M. R., Assadi, R. A., Jafarkhani, H., & Kheradvar, A. (2020). Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks. Journal of the Royal Society Interface, 17(169). https://doi.org/10.1098/rsif.2020.0267
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.