Abstract
Conventionally, the camera localization for augmented reality (AR) relies on detecting a known pattern within the captured images. In this study, a markerless AR scheme has been designed based on a Stereo Video See-Through Head-Mounted Display (HMD) device. The proposed markerless AR scheme can be utilized for medical applications such as training, telementoring, or preoperative explanation. Firstly, a virtual model for AR visualization is aligned to the target in physical space by an improved Iterative Closest Point (ICP) based surface registration algorithm, with the target surface structure reconstructed by a stereo camera pair; then, a markerless AR camera localization method is designed based on the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm and the Random Sample Consensus (RANSAC) correction algorithm. Our AR camera localization method is shown to be better than the traditional marker-based and sensor-based AR environment. The demonstration system was evaluated with a plastic dummy head and the display result is satisfactory for a multiple-view observation.
Cite
CITATION STYLE
Hsieh, C. H., & Lee, J. D. (2015). Markerless augmented reality via stereo video see-through head-mounted display device. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/329415
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.