Improved lower bounds of DNA tags based on a modified genetic algorithm

8Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The well-known massively parallel sequencing method is efficient and it can obtain sequence data from multiple individual samples. In order to ensure that sequencing, replication, and oligonucleotide synthesis errors do not result in tags (or barcodes) that are unrecoverable or confused, the tag sequences should be abundant and sufficiently different. Recently, many design methods have been proposed for correcting errors in data using error-correcting codes. The existing tag sets contain small tag sequences, so we used a modified genetic algorithm to improve the lower bound of the tag sets in this study. Compared with previous research, our algorithm is effective for designing sets of DNA tags. Moreover, the GC content determined by existing methods includes an imprecise range. Thus, we improved the GC content determination method to obtain tag sets that control the GC content in a more precise range. Finally, previous studies have only considered perfect self-complementarity. Thus, we considered the crossover between different tags and introduced an improved constraint into the design of tag sets.

Cite

CITATION STYLE

APA

Wang, B., Wei, X., Dong, J., & Zhang, Q. (2015). Improved lower bounds of DNA tags based on a modified genetic algorithm. PLoS ONE, 10(2). https://doi.org/10.1371/journal.pone.0110640

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free