Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset

  • et al.
N/ACitations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.

Cite

CITATION STYLE

APA

K V*, P., K., A., & S., N. (2020). Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset. International Journal of Recent Technology and Engineering (IJRTE), 8(6), 4726–4730. https://doi.org/10.35940/ijrte.f9877.038620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free