Abstract
Aromatic β-hydroxyaldehydes, 1,3-diols, and α,β-unsaturated aldehydes are valuable precursors to biologically active natural products and drug molecules. Herein we report the biocatalytic aldol condensation of acetaldehyde with various aromatic aldehydes to give a number of aromatic α,β-unsaturated aldehydes using a previously engineered variant of 4-oxalocrotonate tautomerase [4-OT(M45T/F50A)] as carboligase. Moreover, an efficient one-pot two-step chemoenzymatic route toward chiral aromatic 1,3-diols has been developed. This one-pot chemoenzymatic strategy successfully combined a highly enantioselective aldol addition step catalyzed by a proline-based carboligase [4-OT(M45T/F50A) or TAUT015] with a chemical reduction step to convert enzymatically prepared aromatic β-hydroxyaldehydes into the corresponding 1,3-diols with high optical purity (e.r. up to >99:1) and in good isolated yield (51-92%). These developed (chemo)enzymatic methodologies offer alternative synthetic choices to prepare a variety of important drug precursors.
Author supplied keywords
Cite
CITATION STYLE
Saifuddin, M., Guo, C., Biewenga, L., Saravanan, T., Charnock, S. J., & Poelarends, G. J. (2020). Enantioselective Aldol Addition of Acetaldehyde to Aromatic Aldehydes Catalyzed by Proline-Based Carboligases. ACS Catalysis, 10(4), 2522–2527. https://doi.org/10.1021/acscatal.0c00039
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.