Abstract
Patients with primary and bone metastatic breast cancer have significantly reduced survival and life quality. Due to the poor drug delivery efficiency of anti-metastasis therapy and the limited response rate of immunotherapy for breast cancer, effective treatment remains a formidable challenge. In this work, engineered macrophages (Oxa(IV)@ZnPc@M) carrying nanomedicine containing oxaliplatin prodrug and photosensitizer are designed as near-infrared (NIR) light-activated drug vectors, aiming to achieve enhanced chemo/photo/immunotherapy of primary and bone metastatic tumors. Oxa(IV)@ZnPc@M exhibits an anti-tumor M1 phenotype polarization and can efficiently home to primary and bone metastatic tumors. Additionally, therapeutics inside Oxa(IV)@ZnPc@M undergo NIR triggered release, which can kill primary tumors via combined chemo-photodynamic therapy and induce immunogenic cell death simultaneously. Oxa(IV)@ZnPc@M combined with anti-PD-L1 can eliminate primary and bone metastatic tumors, activate tumor-specific antitumor immune response, and improve overall survival with limited systemic toxicity. Therefore, this all-in-one macrophage provides a treatment platform for effective therapy of primary and bone metastatic tumors.
Cite
CITATION STYLE
Huang, Y., Guan, Z., Dai, X., Shen, Y., Wei, Q., Ren, L., … Zhao, C. (2021). Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24564-0
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.