Abstract
Recent work has shown that recurrent neural networks (RNNs) can implicitly capture and exploit hierarchical information when trained to solve common natural language processing tasks (Blevins et al., 2018) such as language modeling (Linzen et al., 2016; Gulordava et al., 2018) and neural machine translation (Shi et al., 2016). In contrast, the ability to model structured data with non-recurrent neural networks has received little attention despite their success in many NLP tasks (Gehring et al., 2017; Vaswani et al., 2017). In this work, we compare the two architectures-recurrent versus non-recurrent-with respect to their ability to model hierarchical structure and find that recurrency is indeed important for this purpose. The code and data used in our experiments is available at https://github.com/ketranm/fan_vs_rnn
Cite
CITATION STYLE
Tran, K., Bisazza, A., & Monz, C. (2018). The importance of being recurrent for modeling hierarchical structure. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 (pp. 4731–4736). Association for Computational Linguistics. https://doi.org/10.18653/v1/d18-1503
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.