Bayesian LASSO for quantitative trait loci mapping

225Citations
Citations of this article
212Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The mapping of quantitative trait loci (QTL) is to identify molecular markers or genomic loci that influence the variation of complex traits. The problem is complicated by the facts that QTL data usually contain a large number of markers across the entire genome and most of them have little or no effect on the phenotype. In this article, we propose several Bayesian hierarchical models for mapping multiple QTL that simultaneously fit and estimate all possible genetic effects associated with all markers. The proposed models use prior distributions for the genetic effects that are scale mixtures of normal distributions with mean zero and variances distributed to give each effect a high probability of being near zero. We consider two types of priors for the variances, exponential and scaled inverse-χ2 distributions, which result in a Bayesian version of the popular least absolute shrinkage and selection operator (LASSO) model and the well-known Student's t model, respectively. Unlike most applications where fixed values are preset for hyperparameters in the priors, we treat all hyperparameters as unknowns and estimate them along with other parameters. Markov chain Monte Carlo (MCMC) algorithms are developed to simulate the parameters from the posteriors. The methods are illustrated using well-known barley data. Copyright © 2008 by the Genetics Society of America.

Cite

CITATION STYLE

APA

Yi, N., & Xu, S. (2008). Bayesian LASSO for quantitative trait loci mapping. Genetics, 179(2), 1045–1055. https://doi.org/10.1534/genetics.107.085589

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free