Understanding the process of speciation requires understanding how gene flow influences divergence. Recent analyses indicate that divergence can take place despite gene flow and that the sex chromosomes can exhibit different levels of gene flow than autosomes and mitochondrial DNA. Using an eight marker dataset including autosomal, z-linked, and mitochondrial loci we tested the hypothesis that blue-footed (Sula nebouxii) and Peruvian (S. variegata) boobies diverged from their common ancestor with gene flow, paying specific attention to the differences in gene flow estimates from nuclear and mitochondrial markers. We found no gene flow at mitochondrial markers, but found evidence from the combined autosomal and z-linked dataset that blue-footed and Peruvian boobies experienced asymmetrical gene flow during or after their initial divergence, predominantly from Peruvian boobies into blue-footed boobies. This gene exchange may have occurred either sporadically between periods of allopatry, or regularly throughout the divergence process. Our results add to growing evidence that diverging species can remain distinct but exchange genes. © 2013 Taylor et al.
CITATION STYLE
Taylor, S. A., Anderson, D. J., & Friesen, V. L. (2013). Evidence for Asymmetrical Divergence-Gene Flow of Nuclear Loci, but Not Mitochondrial Loci, between Seabird Sister Species: Blue-Footed (Sula nebouxii) and Peruvian (S. variegata) Boobies. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0062256
Mendeley helps you to discover research relevant for your work.