Identification and characterization of a putative manganese export protein in Vibrio cholerae

20Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Manganese plays an important role in the cellular physiology and metabolism of bacterial species, including the human pathogen Vibrio cholerae. The intracellular level of manganese ions is controlled through coordinated regulation of the import and export of this element. We have identified a putative manganese exporter (VC0022), named mneA (manganese exporter A), which is highly conserved among Vibrio spp. An mneA mutant exhibited sensitivity to manganese but not to other cations. Under high-manganese conditions, the mneA mutant showed an almost 50-fold increase in intracellular manganese levels and reduced intracellular iron relative to those of its wild-type parent, suggesting that the mutant's manganese sensitivity is due to the accumulation of toxic levels of manganese and reduced iron. Expression of mneA suppressed the manganese-sensitive phenotype of an Escherichia coli strain carrying a mutation in the nonhomologous manganese export gene, mntP, further supporting a manganese export function for V. cholerae MneA. The level of mneA mRNA was induced approximately 2.5-fold after addition of manganese to the medium, indicating regulation of this gene by manganese. This study offers the first insights into understanding manganese homeostasis in this important pathogen.

Cite

CITATION STYLE

APA

Fisher, C. R., Wyckoff, E. E., Peng, E. D., & Payne, S. M. (2016). Identification and characterization of a putative manganese export protein in Vibrio cholerae. Journal of Bacteriology, 198(20), 2810–2817. https://doi.org/10.1128/JB.00215-16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free