Detection of mass panic using Internet of Things and machine learning

0Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The increase of emergency situations that cause mass panic in mass gatherings, such as terrorist attacks, random shooting, stampede, and fires, sheds light on the fact that advancements in technology should contribute in timely detecting and reporting serious crowd abnormal behaviour. The new paradigm of the 'Internet of Things' (IoT) can contribute to that. In this study, a method for real-time detection of abnormal crowd behaviour in mass gatherings is proposed. This system is based on advanced wireless connections, wearable sensors and machine learning technologies. It is a new crowdsourcing approach that considers humans themselves as the surveillance devices that exist everywhere. A sufficient number of the event's attendees are supposed to wear an electronic wristband which contains a heart rate sensor, motion sensors and an assisted-GPS, and has a wireless connection. It detects the abnormal behaviour by detecting heart rate increase and abnormal motion. Due to the unavailability of public bio-dataset on mass panic, dataset of this study was collected from 89 subjects wearing the above-mentioned wristband and generating 1054 data samples. Two types of data collected were: firstly, the data of normal daily activities and secondly, the data of abnormal activities resembling the behaviour of escape panic. Moreover, another abnormal dataset was synthetically generated to simulate panic with limited motion. In our proposed approach, two-phases of data analysis are done. Phase-I is a deep machine learning model that was used to analyze the sensors' collected readings of the wristband and detect if the person has indeed panicked in order to send alerting signals. While phase-II data analysis takes place in the monitoring server that receives the alerting signals to conclude if it is a mass panic incident or a false positive case. Our experiments demonstrate that the proposed system can offer a reliable, accurate, and fast solution for panic detection. This experiment uses the Hajj pilgrimage as a case study.

Cite

CITATION STYLE

APA

Alsalat, G. Y., El-Ramly, M., Fahmy, A. A., & Karim Said, M. D. (2018). Detection of mass panic using Internet of Things and machine learning. International Journal of Advanced Computer Science and Applications, 9(5), 320–329. https://doi.org/10.14569/IJACSA.2018.090542

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free