Liddle-Mutation of the β-Subunit, but not the γ-Subunit, Attenuates Protein Kinase C-Mediated Inhibition of Human Epithelial Sodium Channels (hENaC)

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Mammalian distal nephron and distal colon, prime sites for Na+ homeostasis, contain amiloride-sensitive epithelial sodium channels (ENaC). Protein kinase C (PKC) inhibits ENaC by phosphorylating serine and threonine residues within COOH termini of the β- and/or γ-subunits. Although some of these phosphorylation sites are close to the PY motifs, it is unclear whether they remain susceptible to PKC in Liddle-mutated ENaC β- and/or γ-subunits, where PY motifs are truncated, resulting in increased apical ENaC expression. We therefore studied the effects of PKC in wild-type and Liddle-mutated human epithelial Na+ channels (hENaC) expressed in Xenopus oocytes, using the dual-electrode voltage clamp technique. PKC activation using 500 nmol/l phorbol 12-myristate 13-acetate (PMA) decreased amiloride-sensitive Na+ currents by 80 % in oocytes expressing wild-type hENaC, an effect largely prevented by co-exposure to 50 µmol/l calphostin C (a specific inhibitor of PKC), whereas 500 nmol/l phorbol didecanoate (PDD), an inactive phorbol ester which does not stimulate PKC, had no effect. In oocytes expressing hENaC containing the Liddle-mutated β-subunit, PMA elicited a 54 % decrease in amiloride-sensitive Na+ currents, significantly (P < 0.0025) less than that in oocytes expressing wild-type hENaC. By contrast, in oocytes expressing hENaC containing the Liddle-mutated γ-subunit, PMA elicited a 68 % decrease in amiloride-sensitive Na+ current, similar (P = 0.10) to that in oocytes expressing wild-type hENaC. We conclude that hENaC incorporating the Liddle-mutated β-subunit lacks one or more PKC phosphorylation sites, thereby significantly reducing the inhibitory effect of PKC on Na+ channel activity, whereas hENaC incorporating Liddle-mutated γ-subunits remains as susceptible to PKC as wild-type hENaC.

Cite

CITATION STYLE

APA

Robins, G. G., & Sandle, G. I. (2016). Liddle-Mutation of the β-Subunit, but not the γ-Subunit, Attenuates Protein Kinase C-Mediated Inhibition of Human Epithelial Sodium Channels (hENaC). Journal of Membrane Biology, 249(3), 271–279. https://doi.org/10.1007/s00232-015-9866-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free