Abstract
To investigate the effect of low soil pH caused by fertilization on soil available zinc in calcareous soil, this study was conducted based on a long-term experiment consisting of: (a) no fertilization (CT); (b) mineral fertilizer application coupled with 7500 kg/ha of wheat straw (WS-NPK); (c) mineral fertilizer application coupled with 3750 kg/ha of wheat straw (1/2WS-NPK); (d) mineral fertilizer application alone (NPK). Long-term fertilization results in a significant increase in soil DTPA-extractable zinc. However, the increased soil DTPA-extractable zinc is unavailable to crops and mainly confined to 0.25 mm > and 0.25 mm to 1 mm aggregates. Compared to CT, soil DTPA-extractable zinc under fertilization is more than 9.67% and 122.36% higher in 0.25 mm > and 0.25 mm to 1 mm aggregates, respectively. Furthermore, plant-available zinc in the 0-15 cm soil layer and wheat grain zinc are both significantly positive related to soil DTPA-extractable zinc in > 2 mm aggregates. Therefore, plant-available zinc in the 0-15 cm layer is closely associated with DTPA-extractable zinc in > 2 mm aggregates, and the low soil pH caused by long-term fertilization could not enhance plant-available zinc in the surface soil layer nor elevate wheat grain zinc concentration because of the occlusive effect of soil aggregates.
Author supplied keywords
Cite
CITATION STYLE
Guo, Z., Guo, X., Wang, J., & Wang, D. Z. (2013). Occlusive effect of soil aggregates on increased soil DTPA-extractable zinc under low soil pH caused by long-term fertilization. Plant, Soil and Environment, 59(11), 524–529. https://doi.org/10.17221/489/2013-pse
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.