Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications

  • Suzuki S
  • Sasaki S
  • Sairi A
  • et al.
N/ACitations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene ( BDAA ) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility ( CCIA )]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples.

Cite

CITATION STYLE

APA

Suzuki, S., Sasaki, S., Sairi, A. S., Iwai, R., Tang, B. Z., & Konishi, G. (2020). Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications. Angewandte Chemie, 132(25), 9940–9951. https://doi.org/10.1002/ange.202000940

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free