Effect of Plasma pretreatment and Graphene oxide ratios on the transport properties of PVA/PVP membranes for fuel cells

4Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, a novel proton-conducting polymer electrolyte membrane based on a mixture of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) (1:1) mixed with different ratios of graphene oxide (GO) and plasma-treated was successfully synthesized. Dielectric barrier dielectric (DBD) plasma was used to treat the prepared samples at various dose rates (2, 4, 6, 7, 8, and 9 min) and at fixed power input (2 kV, 50 kHz). The treated samples (PVA/PVP:GO wt%) were soaked in a solution of styrene and tetrahydrofuran (70:30 wt%) with 5 × 10−3 g of benzoyl peroxide as an initiator in an oven at 60 °C for 12 h and then sulfonated to create protonic membranes (PVA/PVP-g-PSSA:GO). The impacts of graphene oxide (GO) on the physical, chemical, and electrochemical properties of plasma-treated PVA/PVP-g-PSSA:x wt% GO membranes (x = 0, 0.1, 0.2, and 0.3) were investigated using different techniques. SEM results showed a better dispersion of nanocomposite-prepared membranes; whereas the AFM results showed an increase in total roughness with increasing the content of GO. FTIR spectra provide more information about the structural variation arising from the grafting and sulfonation processes to confirm their occurrence. The X-ray diffraction pattern showed that the PVA/PVP-g-PSSA:x wt% GO composite is semi-crystalline. As the level of GO mixing rises, the crystallinity of the mixes decreases. According to the TGA curve, the PVA/PVP-g-PSSA:x wt% GO membranes are chemically stable up to 180 °C which is suitable for proton exchange membrane fuel cells. Water uptake (WU) was also measured and found to decrease from 87.6 to 63.3% at equilibrium with increasing GO content. Ion exchange capacity (IEC) was calculated, and the maximum IEC value was 1.91 meq/g for the PVA/PVP-g-PSSA: 0.3 wt% GO composite membrane. At room temperature, the maximum proton conductivity was 98.9 mS/cm for PVA/PVP-g-PSSA: 0.3 wt% GO membrane. In addition, the same sample recorded a methanol permeability of 1.03 × 10−7 cm2/s, which is much less than that of Nafion NR-212 (1.63 × 10−6 cm2/s). These results imply potential applications for modified polyelectrolytic membranes in fuel cell technology.

Cite

CITATION STYLE

APA

Abdel-Hamed, M. O., Draz, A. A., Khalaf, M., El-Hossary, F. M., Mohamed, H. F. M., & Abdel-Hady, E. E. (2024). Effect of Plasma pretreatment and Graphene oxide ratios on the transport properties of PVA/PVP membranes for fuel cells. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-51237-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free