LifeStream: A high-performance stream processing engine for periodic streams

6Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Hospitals around the world collect massive amounts of physiological data from their patients every day. Recently, there has been an increase in research interest to subject this data to statistical analysis to gain more insights and provide improved medical diagnoses. Such analyses require complex computations on large volumes of data, demanding efficient data processing systems. This paper shows that currently available data processing solutions either fail to meet the performance requirements or lack simple and flexible programming interfaces. To address this problem, we propose LifeStream, a high-performance stream processing engine for physiological data. LifeStream hits the sweet spot between ease of programming by providing a rich temporal query language support and performance by employing optimizations that exploit the periodic nature of physiological data. We demonstrate that LifeStream achieves end-to-end performance up to 7.5× higher than state-of-the-art streaming engines and 3.2× than hand-optimized numerical libraries on real-world datasets and workloads.

Cite

CITATION STYLE

APA

Jayarajan, A., Hau, K., Goodwin, A., & Pekhimenko, G. (2021). LifeStream: A high-performance stream processing engine for periodic streams. In International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS (pp. 107–122). Association for Computing Machinery. https://doi.org/10.1145/3445814.3446725

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free