Identification of phosphorylation consensus sequences and endogenous neuronal substrates of the psychiatric risk kinase TNIK

31Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase highly expressed in the brain and enriched in the postsynaptic density of glutamatergic synapses in the mammalian brain. Accumulating genetic evidence and functional data have implicated TNIK as a risk factor for psychiatric disorders. However, the endogenous substrates of TNIK in neurons are unknown. Here, we describe a novel selective small molecule inhibitor of the TNIK kinase family. Using this inhibitor, we report the identification of endogenous neuronal TNIK substrates by immunoprecipitation with a phosphomotif antibody followed by mass spectrometry. Phosphorylation consensus sequences were defined by phosphopeptide sequence analysis. Among the identified substrates were members of the delta-catenin family including p120-catenin, δ-catenin, and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), each of which is linked to psychiatric or neurologic disorders. Using p120-catenin as a representative substrate, we show TNIK-induced p120-catenin phosphorylation in cells requires intact kinase activity and phosphorylation of TNIK at T181 and T187 in the activation loop. Addition of the small molecule TNIK inhibitor or knocking down TNIK by two shRNAs reduced endogenous p120-catenin phosphorylation in cells. Together, using a TNIK inhibitor and phosphomotif antibody, we identify endogenous substrates of TNIK in neurons, define consensus sequences for TNIK, and suggest signaling pathways by which TNIK influences synaptic development and function linked to psychiatric and neurologic disorders.

Cite

CITATION STYLE

APA

Wang, Q., Amato, S. P., Rubitski, D. M., Hayward, M. H., Kormos, B. L., Verhoest, P. R., … Ehlers, M. D. (2016). Identification of phosphorylation consensus sequences and endogenous neuronal substrates of the psychiatric risk kinase TNIK. Journal of Pharmacology and Experimental Therapeutics, 356(2), 410–423. https://doi.org/10.1124/jpet.115.229880

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free