A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics

22Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, defect density) with pixel resolution from pictures of 25 cm2 samples. Our machine vision tool—called PerovskiteVision—can be combined with an optical model to predict photovoltaic cell and module current density from the perovskite film thickness. We use the measured film properties and predicted device current density to identify a posteriori the process conditions that simultaneously maximize the device performance and the manufacturing throughput for large-area perovskite deposition using gas-knife assisted slot-die coating. PerovskiteVision thus facilitates the transfer of a new deposition process to large-scale photovoltaic module manufacturing. This work shows how machine vision can accelerate slow characterization steps essential for the multi-objective optimization of thin film deposition processes.

Cite

CITATION STYLE

APA

Taherimakhsousi, N., Fievez, M., MacLeod, B. P., Booker, E. P., Fayard, E., Matheron, M., … Berlinguette, C. P. (2021). A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics. Npj Computational Materials, 7(1). https://doi.org/10.1038/s41524-021-00657-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free