Heteroatom-Doped Carbon Quantum Dots and Polymer Composite as Dual-Mode Nanoprobe for Fluorometric and Colorimetric Determination of Picric Acid

32Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Oxygen- and nitrogen-heteroatom-doped, water-dispersible, and bright blue-fluorescent carbon dots (ON-CDs) were prepared for the selective and sensitive determination of 2,4,6-trinitrophenol (picric acid, PA). ON-CDs with 49.7% quantum yield were one-pot manufactured by the reflux method using citric acid, d-glucose, and ethylenediamine precursors. The surface morphology of ON-CDs was determined by scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering, Raman, infrared, and X-ray photoelectron spectroscopy techniques, and their photophysical properties were estimated by fluorescence spectroscopy, UV-vis spectroscopy, fluorescence lifetime measurement, and 3D-fluorescence excitation-emission matrix analysis. ON-CDs at an average particle size of 3.0 nm had excitation/emission wavelengths of 355 and 455 nm, respectively. With the dominant inner-filter effect- and hydrogen-bonding interaction-based static fluorescence quenching phenomena supported by ground-state charge-transfer complexation (CTC), the fluorescence of ON-CDs was selectively quenched with PA in the presence of various types of explosives (i.e., 2,4,6-trinitrotoluene, tetryl, 1,3,5-trinitroperhydro-1,3,5-triazine, 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, pentaerythritol tetranitrate, 3-nitro-1,2,4-triazole-5-one, and TATP-hydrolyzed H2O2). The analytical results showed that the emission intensity varied linearly with a correlation coefficient of 0.9987 over a PA concentration range from 1.0 × 10-9 to 11.0 × 10-9 M. As a result of ground-state interaction (H-bonding and CTC) of ON-CDs with PA, an orange-colored complex was formed different from the characteristic yellow color of PA in an aqueous medium, allowing naked-eye detection of PA. The detection limits for PA with ON-CDs were 12.5 × 10-12 M (12.5 pM) by emission measurement and 9.0 × 10-10 M (0.9 nM) by absorption measurement. In the presence of synthetic explosive mixtures, common soil cations/anions, and camouflage materials, PA was recovered in the range of 95.2 and 102.5%. The developed method was statistically validated against a reference liquid chromatography coupled to tandem mass spectrometry method applied to PA-contaminated soil. In addition, a poly(vinyl alcohol)-based polymer composite film {PF(ON-CDs)} was prepared by incorporating ON-CDs, enabling the smartphone-assisted fluorometric detection of PA.

Cite

CITATION STYLE

APA

Koç, Ö. K., Üzer, A., & Apak, R. (2023). Heteroatom-Doped Carbon Quantum Dots and Polymer Composite as Dual-Mode Nanoprobe for Fluorometric and Colorimetric Determination of Picric Acid. ACS Applied Materials and Interfaces, 15(35), 42066–42079. https://doi.org/10.1021/acsami.3c07938

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free