Experimental assessment of thermal performance and bridging effects of low-cost sandwich panels under a high-temperature impinging jet

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Sandwich panels are commonly used across industries for their ability to bear structural and thermal loads. In this paper, a panel chamber matching apparatus was designed to investigate the thermal performance of eight steel-based panels by exposing them to an impinging jet at approximately 550°C for 30 min. Three types of low-cost materials (polycrystalline filaments, silica aerogel, and aluminum silicate) were used as the insulation core. The temperature of the panel surfaces was measured, as well as the metallic fasteners, including bolts, nails, battens, seams, and angle iron, to examine their thermal bridge effects. Major conclusions include the following: first, the maximum temperature on the impinged surface was consistent among all 20 cases, whereas that of the surface under free convection varied, ranging from 41 to 120°C, depending on the core and thermal bridges. Second, most of the highest temperatures on opposite surfaces were caused by a section of bare angle iron, and this bridging effect could be significantly reduced by up to 50 °C using a few layers of cloth, although the improvement could be temporary. Bolts and nails were less effective as thermal bridges, while the battens could be more effective. Third, the estimated heat flux of all specimens ranged from 167 to 331 W·m-2.

Cite

CITATION STYLE

APA

Ye, W., Cai, J., Huang, Y., Zhi, C., & Zhang, X. (2020). Experimental assessment of thermal performance and bridging effects of low-cost sandwich panels under a high-temperature impinging jet. Materials, 13(16). https://doi.org/10.3390/MA13163620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free