GPS measurements of near-field deformation along the southern Dead Sea Fault System

42Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Analysis of short-term deformation along the southern part of Dead Sea Fault (DSF) provides a systematic view of kinematics this part of the continental transform. The southern DSF consists of two principal segments: the Wadi Araba and Jordan Valley faults. In addition to other regional continuous GPS data, this study uses new data from 25 survey sites and 4 continuous GPS stations in Jordan for improved near-field observations. Resulting velocities are reported with 1-σ uncertainties ranging from 0.4-1.0 mm/yr. Application of elastic dislocation models yields estimates of slip rates for Wadi Araba and Jordan Valley faults are 4.9 ± 0.4 mm/yr and 4.7 ± 0.4 mm/yr, respectively. Modeling also suggests different depths of effective fault locking with 15 ± 5 km and 8 ± 5 km for the Wadi Araba and Jordan Valley faults, respectively. These slip rates are generally consistent with the upper end of the range of slip rates estimated from late Quaternary geology. Spatial variations in effective fault locking generally correspond with a heterogeneous mantle lithosphere. A similar observation can be observed along the southern San Andreas Fault, and this may reflect the influence of heterogeneity in the uppermost mantle on crustal faulting processes. Copyright 2011 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Al Tarazi, E., Abu Rajab, J., Gomez, F., Cochran, W., Jaafar, R., & Ferry, M. (2011). GPS measurements of near-field deformation along the southern Dead Sea Fault System. Geochemistry, Geophysics, Geosystems, 12(12). https://doi.org/10.1029/2011GC003736

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free