The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: Rationale, design and methods of the TAPASS study

23Citations
Citations of this article
290Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Stroke survivors frequently suffer from executive impairments even in the chronic phase after stroke, and there is a need for improved rehabilitation of these functions. One way of improving current rehabilitation treatment may be by online cognitive training. Based on a review of the effectiveness of computer-based cognitive training in healthy elderly, we concluded that cognitive flexibility may be a key element for an effective training, which results in improvements not merely on trained tasks but also in untrained tasks (i.e., far transfer). The aim of the current study was to track the behavioral and neural effects of computer-based cognitive flexibility training after stroke. We expected that executive functioning would improve after the cognitive flexibility training, and that neural activity and connectivity would normalize towards what is seen in healthy elderly. Methods/design: The design was a multicenter, double blind, randomized controlled trial (RCT) with three groups: an experimental intervention group, an active control group who did a mock training, and a waiting list control group. Stroke patients (3 months to 5 years post-stroke) with cognitive complaints were included. Training consisted of 58 half-hour sessions spread over 12 weeks. The primary study outcome was objective executive function. Secondary measures were improvement on training tasks, cognitive flexibility, objective cognitive functioning in other domains than the executive domain, subjective cognitive and everyday life functioning, and neural correlates assessed by both structural and resting-state functional Magnetic Resonance Imaging. The three groups were compared at baseline, after six and twelve weeks of training, and four weeks after the end of the training. Furthermore, they were compared to healthy elderly who received the same training. Discussion: The cognitive flexibility training consisted of several factors deemed important for effects that go beyond improvement on merely the training task themselves. Due to the presence of two control groups, the effects of the training could be compared with spontaneous recovery and with the effects of a mock training. This study provides insight into the potential of online cognitive flexibility training after stroke. We also compared its results with the effectiveness of the same training in healthy elderly. Trial registration: The Netherlands National Trial Register NTR5174. Registered 22 May 2015.

Cite

CITATION STYLE

APA

van de Ven, R. M., Schmand, B., Groet, E., Veltman, D. J., & Murre, J. M. J. (2015). The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: Rationale, design and methods of the TAPASS study. BMC Neurology, 15(1). https://doi.org/10.1186/s12883-015-0397-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free