Abstract
We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.
Cite
CITATION STYLE
Thalmann, J. K., Veronig, A., & Su, Y. (2016). TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD. The Astrophysical Journal, 826(2), 143. https://doi.org/10.3847/0004-637x/826/2/143
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.