Abstract
pH sensor is an important and practical device with a wide application in environmental protection field and biomedical industries. An efficient way to enhance the practicability of intelligent polymer composed pH sensor is to subtilize the three-dimensional microstructure of the materials, adding measurable features to visualize the output signal. In this work, C. rubi wing scales were combined with pH-responsive smart polymer polymethylacrylic acid (PMAA) through polymerization to achieve a colour-Tunable pH sensor with nature gyroid structure. Morphology and reflection characteristics of the novel composites, named G-PMAA, are carefully investigated and compared with the original biotemplate, C. rubi wing scales. The most remarkable property of G-PMAA is a single-value corresponding relationship between pH value and the reflection peak wavelength (? max), with a colour distinction degree of 18 nm/pH, ensuring the accuracy and authenticity of the output. The pH sensor reported here is totally reversible, which is able to show the same results after several detection circles. Besides, G-PMAA is proved to be not influenced by the detection angle, which makes it a promising pH sensor with superb sensitivity, stability, and angle-independence.
Cite
CITATION STYLE
Xue, R., Zhang, W., Sun, P., Zada, I., Guo, C., Liu, Q., … Zhang, D. (2017). Angle-independent pH-sensitive composites with natural gyroid structure. Scientific Reports, 7. https://doi.org/10.1038/srep42207
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.