In the last decades, virtual sensors have found increasing attention in the research community. Virtual sensors employ mathematical models and different sources of information such as actuator states or sensors, which are already existing in a system, in order to generate virtual measurements. Additionally, in recent years, the concept of virtual actuators has been proposed by leading researchers. Virtual actuators are parts of a fault-tolerant control strategy and aim to accommodate faults and to achieve a safe operation of a faulty plant. This paper describes a novel concept for a fuzzy virtual actuator applied to an automated guided vehicle (AGV). The application of fuzzy logic rules allows integrating expert knowledge or experimental data into the decision making of the virtual actuator. The AGV under consideration disposes of an innovative steering concept, which leads to considerable advantages in terms of maneuverability, but requires an elaborate control system. The application of the virtual actuator allows the accommodation of several possible faults, such as a slippery surface under one of the drive modules of the AGV.
CITATION STYLE
Stetter, R. (2020). A fuzzy virtual actuator for automated guided vehicles. Sensors (Switzerland), 20(15), 1–23. https://doi.org/10.3390/s20154154
Mendeley helps you to discover research relevant for your work.