Abstract
A growing group of low-mass X-ray binaries are found to be accreting at very faint X-ray luminosities of <1036 erg s-1 (2-10 keV). One such system is the new X-ray transient IGR J17494-3030. We present Swift and XMM-Newton observations obtained during its 2012 discovery outburst. The Swift observations trace the peak of the outburst, which reached a luminosity of ~7×1035 (D/8 kpc)2 erg s-1 (2-10 keV). The XMM-Newton data were obtained when the outburst had decayed to an intensity of ~8 × 1034 (D/8 kpc)2 erg s-1. The spectrum can be described by a power law with an index of Γ ~ 1.7 and requires an additional soft component with a blackbody temperature of ~0.37 keV (contributing ~20 per cent to the total unabsorbed flux in the 0.5-10 keV band). Given the similarities with high-quality spectra of very faint neutron-star low-mass X-ray binaries, we suggest that the compact primary in IGR J17494-3030 is a neutron star. Interestingly, the source intensity decreased rapidly during the ~12 h XMM-Newton observation, which was accompanied by a decrease in inferred temperature.We interpret the soft spectral component as arising from the neutron-star surface due to low-level accretion, and propose that the observed decline in intensity was the result of a decrease in the mass-accretion rate on to the neutron star. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Author supplied keywords
Cite
CITATION STYLE
Armas Padilla, M., Wijnands, R., & Degenaar, N. (2013). XMM-Newton and Swift spectroscopy of the newly discovered very faint X-ray transient IGR J17494-3030. Monthly Notices of the Royal Astronomical Society: Letters, 436(1). https://doi.org/10.1093/mnrasl/slt119
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.