Analysis of multiple phenotypes in genome-wide genetic mapping studies

19Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

This artice is free to access.

Abstract

Background: Complex traits may be defined by a range of different criteria. It would result in a loss of information to perform analyses simply on the basis of a final clinical dichotomized affected / unaffected variable.Results: We assess the performance of four alternative approaches for the analysis of multiple phenotypes in genetic association studies. We describe the four methods in detail and discuss their relative theoretical merits and disadvantages. Using simulation we demonstrate that PCA provides the greatest power when applied to both correlated phenotypes and with large numbers of phenotypes. The multivariate approach had low type I error only with independent phenotypes or small numbers of phenotypes. In this study, our application of the four methods to schizophrenia data provides converging evidence of the relative performance of the methods.Conclusions: Via power analysis of simulated data and testing of experimental data, we conclude that PCA, creating one variable based on a linear combination of all the traits, performs optimally. We propose that our comparison will provide insight into the properties of the methods and help researchers to choose appropriate strategy in future experimental studies. © 2013 Suo et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Suo, C., Toulopoulou, T., Bramon, E., Walshe, M., Picchioni, M., Murray, R., & Ott, J. (2013). Analysis of multiple phenotypes in genome-wide genetic mapping studies. BMC Bioinformatics, 14. https://doi.org/10.1186/1471-2105-14-151

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free