Design, synthesis, and antibacterial and antifungal activities of novel trifluoromethyl and trifluoromethoxy substituted chalcone derivatives

50Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

Abstract

Despite the availability of many drugs to treat infectious diseases, the problems like narrow antimicrobial spectrum, drug resistance, hypersensitivities and systemic toxicities are hampering their clinical utility. Based on the above facts, in the present study, we designed, synthesized and evaluated the antibacterial and antifungal activity of novel fluorinated compounds comprising of chalcones bearing trifluoromethyl (A1–A10) and trifluoromethoxy (B1–B10) substituents. The compounds were characterized by spectroscopic techniques and evaluated for their antimicrobial activity against four pathogenic Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Bacillus subtilis) bacterial and fungal (Candida albicans and Aspergillus niger) strains. In this study, the compounds with trifluoromethoxy group were more effective than those with trifluoromethyl group. Among the 20 fluorinated chalcones, compound A3/B3 bearing an indole ring attached to the olefinic carbon have been proved to possess the most antimicrobial activity compared to the standard drugs without showing cytotoxicity on human normal liver cell line (L02). Further, the minimum inhibitory concentration (MIC) for A3/B3 was determined by serial tube dilution method and showed potential activity. These results would provide promising access to future study about the development of novel agents against bacterial and fungal infections.

Cite

CITATION STYLE

APA

Lagu, S. B., Yejella, R. P., Bhandare, R. R., & Shaik, A. B. (2020). Design, synthesis, and antibacterial and antifungal activities of novel trifluoromethyl and trifluoromethoxy substituted chalcone derivatives. Pharmaceuticals, 13(11), 1–16. https://doi.org/10.3390/ph13110375

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free