Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system

29Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m • K)-1, which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis-Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.

Cite

CITATION STYLE

APA

Ha, S. M., Kwon, O. H., Oh, Y. G., Kim, Y. S., Lee, S. G., Won, J. C., … Yoo, Y. (2015). Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system. Science and Technology of Advanced Materials, 16(6). https://doi.org/10.1088/1468-6996/16/6/065001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free