A combinatorial optimization approach for diverse motif finding applications

27Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Discovering approximately repeated patterns, or motifs, in biological sequences is an important and widely-studied problem in computational molecular biology. Most frequently, motif finding applications arise when identifying shared regulatory signals within DNA sequences or shared functional and structural elements within protein sequences. Due to the diversity of contexts in which motif finding is applied, several variations of the problem are commonly studied. Results: We introduce a versatile combinatorial optimization framework for motif finding that couples graph pruning techniques with a novel integer linear programming formulation. Our approach is flexible and robust enough to model several variants of the motif finding problem, including those incorporating substitution matrices and phylogenetic distances. Additionally, we give an approach for determining statistical significance of uncovered motifs. In testing on numerous DNA and protein datasets, we demonstrate that our approach typically identifies statistically significant motifs corresponding to either known motifs or other motifs of high conservation. Moreover, in most cases, our approach finds provably optimal solutions to the underlying optimization problem. Conclusion: Our results demonstrate that a combined graph theoretic andmathematical programming approach can be the basis for effective and powerful techniques for diverse motif finding applications. © 2006 Zaslavsky and Singh; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Zaslavsky, E., & Singh, M. (2006). A combinatorial optimization approach for diverse motif finding applications. Algorithms for Molecular Biology, 1(1). https://doi.org/10.1186/1748-7188-1-13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free