Abstract
Resistance breeding is crucial for sustainable control of wheat leaf rust and single nucleotide polymorphism (SNP)-based genome-wide association studies (GWAS) are widely used to dissect leaf rust resistance. Unfortunately, GWAS based on SNPs often explained only a small proportion of the genetic variation. We compared SNP-based GWAS with a method based on functional haplotypes (FH) considering epistasis in a comprehensive hybrid wheat mapping population composed of 133 parents plus their 1574 hybrids and characterized with 626 245 high-quality SNPs. In total, 2408 and 1 139 828 significant associations were detected in the mapping population by using SNP-based and FH-based GWAS, respectively. These associations mapped to 25 and 69 candidate regions, correspondingly. SNP-based GWAS highlighted two already-known resistance genes, Lr22a and Lr34-B, while FH-based GWAS detected associations not only on these genes but also on two additional genes, Lr10 and Lr1. As revealed by a second hybrid wheat population for independent validation, the use of detected associations from SNP-based and FH-based GWAS reached predictabilities of 11.72% and 22.86%, respectively. Therefore, FH-based GWAS is not only more powerful for detecting associations, but also improves the accuracy of marker-assisted selection compared with the SNP-based approach.
Author supplied keywords
Cite
CITATION STYLE
Liu, F., Jiang, Y., Zhao, Y., Schulthess, A. W., & Reif, J. C. (2020). Haplotype-based genome-wide association increases the predictability of leaf rust (Puccinia triticina) resistance in wheat. Journal of Experimental Botany, 71(22), 6958–6968. https://doi.org/10.1093/jxb/eraa387
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.