Abstract
Electric transmission lines play a very essential role in transmitting power energy from generation centers to consumption regions. They can be exposed to fault occurrences due to various reasons, such as lightning strikes, malfunction of components, and human errors. Since fault is unpredictable, a fast fault location method is required to minimize the impact of fault in power systems. This paper presents a research work for comparing the performance of the impedance-based fault location methods, in which the impedance parameter of the faulted line section is calculated as a measure of the distance to the fault. To evaluate the capability of the methods for correctly detecting and locating the fault locations, comprehensive simulation results are carried out. This computation is based on modeling and simulating a three-phase 220kV overhead transmission line in the Matlab/Simulink software. Short circuits which occur in various fault resistances and locations along the transmission line are emulated to investigate several case studies and the accuracy of fault location determination is calculated to compare the performance among these fault location methods.
Author supplied keywords
Cite
CITATION STYLE
Khoa, N. M., Cuong, M. V., Cuong, H. Q., & Hieu, N. T. T. (2022). Performance Comparison of Impedance-Based Fault Location Methods for Transmission Line. International Journal of Electrical and Electronic Engineering and Telecommunications, 11(3), 234–241. https://doi.org/10.18178/ijeetc.11.3.234-241
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.