The first report on crystal and molecular structure of 3,6-diiodo-9-ethyl-9H-carbazole is presented. Experimental room-temperature X-ray and 13C chemical shift studies were supported by advanced theoretical calculations using density functional theory. The 13C nuclear magnetic shieldings were predicted at the non-relativistic and relativistic level of theory using the zeroth-order regular approximation. Theoretical relativistic calculations of chemical shifts of carbons C3 and C6, directly bonded to iodine atoms, produced a reasonable agreement with experiment (initial deviation from experiment of 44.3 dropped to 4.25 ppm). The changes in ring aromatic character were estimated via a simple harmonic oscillator model of aromaticity and nucleus-independent chemical shift index calculations. A good linear correlation between experimental and theoretically predicted structural and NMR parameters was observed.
CITATION STYLE
Radula-Janik, K., Kupka, T., Ejsmont, K., Daszkiewicz, Z., & Sauer, S. P. A. (2016). DFT and experimental studies on structure and spectroscopic parameters of 3,6-diiodo-9-ethyl-9H-carbazole. Structural Chemistry, 27(1), 199–207. https://doi.org/10.1007/s11224-015-0711-8
Mendeley helps you to discover research relevant for your work.