A mutation-independent CRISPR-Cas9–mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency

50Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ornithine transcarbamylase (OTC) deficiency is an X-linked urea cycle disorder associated with high mortality. Although a promising treatment for late-onset OTC deficiency, adeno-associated virus (AAV) neonatal gene therapy would only provide short-term therapeutic effects as the non-integrated genome gets lost during hepatocyte proliferation. CRISPR-Cas9-mediated homology-directed repair can correct a G-to-A mutation in 10% of OTC alleles in the livers of newborn OTC spf ash mice. However, an editing vector able to correct one mutation would not be applicable for patients carrying different OTC mutations, plus expression would not be fast enough to treat a hyperammonemia crisis. Here, we describe a dual-AAV vector system that accomplishes rapid short-term expression from a non-integrated minigene and long-term expression from the site-specific integration of this minigene without any selective growth advantage for OTC-positive cells in newborns. This CRISPR-Cas9 gene-targeting approach may be applicable to all patients with OTC deficiency, irrespective of mutation and/or clinical state.

Cite

CITATION STYLE

APA

Wang, L., Yang, Y., Breton, C., Bell, P., Li, M., Zhang, J., … Wilson, J. M. (2020). A mutation-independent CRISPR-Cas9–mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Science Advances, 6(7). https://doi.org/10.1126/sciadv.aax5701

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free