The clinical application of HIV fusion inhibitor, enfuvirtide (T20), was limited mainly because of its short half-life. Here we designed and synthesized two PEGylated C34 peptides, PEG2kC34 and PEG5kC34, with the PEG chain length of 2 and 5 kDa, respectively, and evaluated their anti-HIV-1 activity and mechanisms of action. We found that these two PEGylated peptides could bind to the HIV-1 peptide N36 to form high affinity complexes with high α-helicity. The peptides PEG2kC34 and PEG5kC34 effectively inhibited HIV-1 Env-mediated cell–cell fusion with an effective concentration for 50% inhibition (EC50 ) of about 36 nM. They also inhibited infection of the laboratory-adapted HIV-1 strain NL4-3 with EC50 of about 4–5 nM, and against 47 HIV-1 clinical isolates circulating in China with mean EC50 of PEG2kC34 and PEG5kC34 of about 26 nM and 32 nM, respectively. The plasma half-life (t1/2 ) of PEG2kC34 and PEG5kC34 was 2.6 h and 5.1 h, respectively, and the t1/2 of PEGylated C34 was about 2.4-fold and 4.6-fold longer than C34 (~1.1 h), respectively. These findings suggest that PEGylated C34 with broad-spectrum anti-HIV-1 activity and prolonged half-life can be further developed as a peptide fusion inhibitor-based long-acting anti-HIV drug for clinical use to treat HIV-infected patients who have failed to respond to current anti-retrovirus drugs.
CITATION STYLE
Wang, C., Cheng, S., Zhang, Y., Ding, Y., Chong, H., Xing, H., … Ma, L. (2019). Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses, 11(9). https://doi.org/10.3390/V11090811
Mendeley helps you to discover research relevant for your work.