Seed germination is a vital process in plant development involving dynamic biochemical transformations such as lipid metabolism. However, the spatial distribution and dynamic changes of lipids in different seed compartments during germination are poorly understood. In this study, we employed liquid chromatography/mass spectrometry (LC/MS)-based lipidomics and MALDI mass spectrometry imaging (MSI) to investigate lipid changes occurring in the cotyledon and plumule of mung bean seeds during germination. Lipidomic data revealed that the germination process reduced the levels of many glycerolipids (e.g., triglyceride) and phosphatidylglycerols (e.g., phosphatidylcholine) while increased the levels of lysophospholipids (e.g., lysophosphatidylcholine) in both the cotyledon and plumule. Sphingolipids (e.g., sphingomyelin) displayed altered levels solely in the plumule. Sterol levels increased in the cotyledon but decreased in the plumule. Further imaging results revealed that MALDI-MSI could serve as a supplement and validate LC-MS data. These findings enhance our understanding of the metabolic processes underlying seedling development, with potential implications for crop improvement and seed quality control.
CITATION STYLE
Xie, P., Chen, J., Wu, P., & Cai, Z. (2023). Spatial Lipidomics Reveals Lipid Changes in the Cotyledon and Plumule of Mung Bean Seeds during Germination. Journal of Agricultural and Food Chemistry, 71(49), 19879–19887. https://doi.org/10.1021/acs.jafc.3c06029
Mendeley helps you to discover research relevant for your work.