Skyrmion, a topologically-protected soliton, is known to emerge via electron spin in various magnetic materials. The magnetic skyrmion can be driven by low current density and has a potential to be stabilized in nanoscale, offering new directions of spintronics. However, there remain some fundamental issues in widely-studied ferromagnetic systems, which include a difficulty to realize stable ultrasmall skyrmions at room temperature, presence of the skyrmion Hall effect, and limitation of velocity owing to the topological charge. Here we show skyrmion bubbles in a synthetic antiferromagnetic coupled multilayer that are free from the above issues. Additive Dzyaloshinskii-Moriya interaction and spin-orbit torque (SOT) of the tailored stack allow stable skyrmion bubbles at room temperature, significantly smaller threshold current density or higher speed for motion, and negligible skyrmion Hall effect, with a potential to be scaled down to nanometer dimensions. The results offer a promising pathway toward nanoscale and energy-efficient skyrmion-based devices.
CITATION STYLE
Dohi, T., DuttaGupta, S., Fukami, S., & Ohno, H. (2019). Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13182-6
Mendeley helps you to discover research relevant for your work.