Global land cover assessment using spatial uniformity validation dataset

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The Degree Confluence Project (DCP) is a volunteer-based validation dataset that comprises useful information for global land cover map validation. However, there is a problem with using DCP points as validation data for the accuracy assessment of land cover maps. While resolutions of typical global land cover maps are several hundred meters to several kilometers, DCP points can only guarantee an area of several tens of meters that can be confirmed by ground photographs. So, the objective of this study is to create a land cover map validation dataset with added spatial uniformity information using satellite images and DCP points. For this, we devised a new method to semiautomatically guarantee the spatial uniformity of DCP validation data points at any resolution. This method can judge the validation data with guaranteed uniformity with a user’s accuracy of 0.954. Furthermore, we conducted the accuracy assessment for the existing global land cover maps by the DCP validation data with guaranteed spatial uniformity and found that the trends differed by class and region.

Cite

CITATION STYLE

APA

Ishii, Y., Iwao, K., & Kinoshita, T. (2021). Global land cover assessment using spatial uniformity validation dataset. Remote Sensing, 13(15). https://doi.org/10.3390/rs13152950

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free