Objective: Insulin resistance has deleterious effects on cardiometabolic disease. We used Mendelian randomization analyses to clarify the causal relationships of insulin resistance (IR) on circulating blood-based metabolites to shed light on potential mediators of the IR to cardiometabolic disease relationship. Research Design and Methods: We used 53 single nucleotide polymorphisms associated with IR from a recent genome-wide association study (GWAS) to explore their effects on circulating lipids and metabolites. We used published summary-level data from two GWASs of European individuals; data on the exposure (IR) were obtained from meta-GWASs of 188,577 individuals, and data on the outcomes (58 metabolic measures assessed by nuclear magnetic resonance) were taken from a GWAS of 24,925 individuals. Results: One-SD genetically elevated IR (equivalent to 55% higher geometric mean of fasting insulin, 0.89 mmol/L higher triglycerides, and 0.46 mmol/L lower HDL cholesterol) was associated with higher concentrations of all branched-chain amino acids (BCAAs)-isoleucine (0.56 SD;95%CI 0.43, 0.70), leucine (0.42 SD;95%CI 0.28, 0.55), and valine (0.26 SD; 95% CI 0.12, 0.39)-as well as with higher glycoprotein acetyls (an inflammation marker) (0.47 SD; 95% CI 0.32, 0.62) (P < 0.0003 for each). Results were broadly consistent when using multiple sensitivity analyses to account for potential genetic pleiotropy. Conclusions: We provide robust evidence that IR causally affects each individual BCAA and inflammation. Taken together with existing studies, this implies that BCAA metabolism lies on a causal pathway from adiposity and IR to type 2 diabetes.
CITATION STYLE
Wang, Q., Holmes, M. V., Smith, G. D., & Ala-Korpela, M. (2017). Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation. Diabetes Care, 40(12), 1779–1786. https://doi.org/10.2337/dc17-1642
Mendeley helps you to discover research relevant for your work.