Performance and Limitations of Nickel-Doped Chromite Anodes in Electrolyte-Supported Solid Oxide Fuel Cells

13Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ni-doped chromite anodes were integrated into electrolyte-supported cells (ESC) with 5×5 cm2 size and investigated in fuel cell mode with H2/H2O fuel gas. Both a stoichiometric and a nominally A-site deficient chromite anode material showed promising performance at 860 °C approaching the ones of state-of-the-art Ni/Gd-doped ceria (CGO) anodes. While the difference in polarization resistance was small, an increased ohmic resistance of the perovskite anodes was observed, which is related to their limited electronic conductivity. Increasing the chromite electrode thickness was shown to enhance performance and stability considerably. Degradation increased with current density, suggesting its dependency on the electrode potential, and could be reversed by redox cycling. Sulfur poisoning with 20 ppm hydrogen sulfide led to rapid voltage drops for the chromite anodes. It is discussed that Ni nanoparticle exsolution facilitates hydrogen dissociation to the extent that it is not rate-limiting at the investigated temperature unless an insufficiently thick electrode thickness is employed or sulfur impurities are present in the feed gas.

Cite

CITATION STYLE

APA

Riegraf, M., Amaya-Dueñas, D. M., Sata, N., Friedrich, K. A., & Costa, R. (2021). Performance and Limitations of Nickel-Doped Chromite Anodes in Electrolyte-Supported Solid Oxide Fuel Cells. ChemSusChem, 14(11), 2401–2413. https://doi.org/10.1002/cssc.202100330

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free