A novel role for kynurenine 3-monooxygenase in mitochondrial dynamics

13Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The enzyme kynurenine 3-monooxygenase (KMO) operates at a critical branch-point in the kynurenine pathway (KP), the major route of tryptophan metabolism. As the KP has been implicated in the pathogenesis of several human diseases, KMO and other enzymes that control metabolic flux through the pathway are potential therapeutic targets for these disorders. While KMO is localized to the outer mitochondrial membrane in eukaryotic organisms, no mitochondrial role for KMO has been described. In this study, KMO deficient Drosophila melanogaster were investigated for mitochondrial phenotypes in vitro and in vivo. We find that a loss of function allele or RNAi knockdown of the Drosophila KMO ortholog (cinnabar) causes a range of morphological and functional alterations to mitochondria, which are independent of changes to levels of KP metabolites. Notably, cinnabar genetically interacts with the Parkinson's disease associated genes Pink1 and parkin, as well as the mitochondrial fission gene Drp1, implicating KMO in mitochondrial dynamics and mitophagy, mechanisms which govern the maintenance of a healthy mitochondrial network. Overexpression of human KMO in mammalian cells finds that KMO plays a role in the post-translational regulation of DRP1. These findings reveal a novel mitochondrial role for KMO, independent from its enzymatic role in the kynurenine pathway.

Cite

CITATION STYLE

APA

Maddison, D. C., Alfonso-Núñez, M., Swaih, A. M., Breda, C., Campesan, S., Allcock, N., … Giorgini, F. (2020). A novel role for kynurenine 3-monooxygenase in mitochondrial dynamics. PLoS Genetics, 16(11). https://doi.org/10.1371/JOURNAL.PGEN.1009129

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free