Reduction of miR-21 induces SK-N-SH cell apoptosis and inhibits proliferation via PTEN/PDCD4

24Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

MicroRNA (miR/miRNA)-21 is a well-known oncogenic miRNA that is overexpressed in various types of tumors. The tumor-suppressor genes programmed cell death 4 (PDCD4) and phosphatase tensin homologue (PTEN), are targets of miR-21, and are underexpressed in several types of cancer. However, the expression of miR-21 and its target genes in neuroblastoma (NB) remains unclear. In the present study, a miR-21 inhibitor oligonucleotide was transfected into the SK-N-SH cell line, and the expression of miR-21, PTEN and PDCD4 was detected through quantitative polymerase chain reaction analysis. Western blotting was used to examine levels of PTEN, PDCD4 and caspase-3 proteins. The expression of PTEN and PDCD4 in the SK-N-SH cell line transfected with the miR-21 inhibitor was significantly increased compared with untransfected SK-N-SH and negative control-transfected cells. Cell proliferation was inhibited and the apoptotic ratio was significantly increased in miR-21 inhibitor-transfected cells compared with untransfected SK-N-SH and negative control-transfected cells. Western blot analysis revealed a significant increase in caspase-3 expression compared with untransfected SK-N-SH and negative control-transfected cells. The results of the present study indicate that miR-21 may serve an oncogenic role in the cellular processes underlying NB development and thus may be a novel therapeutic target for the treatment of patients with NB.

Cite

CITATION STYLE

APA

Wang, Z., Yao, W., Li, K., Zheng, N., Zheng, C., Zhao, X., & Zheng, S. (2017). Reduction of miR-21 induces SK-N-SH cell apoptosis and inhibits proliferation via PTEN/PDCD4. Oncology Letters, 13(6), 4727–4733. https://doi.org/10.3892/ol.2017.6052

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free