Dual solutions for heat and mass transfer in MHD Jeffrey Fluid in the presence of homogeneousheterogeneous reactions

7Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this study, we analyzed the effects of nonlinear thermal radiation and induced magnetic field on steady two-dimensional incompressible flow of Jeffrey fluid flow past a stretching/shrinking surface in the presence of homogeneous-heterogeneous reactions. For physical relevance in this study we analyzed the behavior of homogeneous and heterogeneous profiles individually. The transformed governing equations with the help of similarity variables are solved numerically via Runge-Kutta and Newton’s method. We obtained better accuracy of the present results by differentiating with the existed published literature. The effect of pertinent parameters on velocity, induced magnetic field, temperature and concentration profiles along with the friction factor and local Nusselt number are presented with the help of graphs and tables. Results imply that the Deborah number have tendency to increase the heat transfer rate. Concentration profiles are positively influenced by the homogeneous-heterogeneous reactions, which assist to enlarge the concentration profiles.

Cite

CITATION STYLE

APA

Rajua, C. S. K., Sandeepa, N., & Prakashb, J. (2016). Dual solutions for heat and mass transfer in MHD Jeffrey Fluid in the presence of homogeneousheterogeneous reactions. Frontiers in Heat and Mass Transfer, 7(1). https://doi.org/10.5098/hmt.7.14

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free