Explanation for the Increase in High-Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm

79Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Nadir and Occultation for MArs Discovery (NOMAD) instrument on board ExoMars Trace Gas Orbiter measured a large increase in water vapor at altitudes in the range of 40–100 km during the 2018 global dust storm on Mars. Using a three-dimensional general circulation model, we examine the mechanism responsible for the enhancement of water vapor in the upper atmosphere. Experiments with different prescribed vertical profiles of dust show that when more dust is present higher in the atmosphere, the temperature increases, and the amount of water ascending over the tropics is not limited by saturation until reaching heights of 70–100 km. The warmer temperatures allow more water to ascend to the mesosphere. Photochemical simulations show a strong increase in high-altitude atomic hydrogen following the high-altitude water vapor increase by a few days.

Cite

CITATION STYLE

APA

Neary, L., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., … Vandaele, A. C. (2020). Explanation for the Increase in High-Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 47(7). https://doi.org/10.1029/2019GL084354

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free