Abstract
Experimental autoimmune myocarditis (EAM) represents a Th17 T cell-mediated mouse model of postinflammatory heart disease. In BALB/c wild-type mice, EAM is a self-limiting disease, peaking 21 days after α-myosin H chain peptide (MyHC-α)/CFA immunization and largely resolving thereafter. In IFN-γR−/− mice, however, EAM is exacerbated and shows a chronic progressive disease course. We found that this progressive disease course paralleled persistently elevated IL-17 release from T cells infiltrating the hearts of IFN-γR−/− mice 30 days after immunization. In fact, IL-17 promoted the recruitment of CD11b+ monocytes, the major heart-infiltrating cells in EAM. In turn, CD11b+ monocytes suppressed MyHC-α-specific Th17 T cell responses IFN-γ-dependently in vitro. In vivo, injection of IFN-γR+/+CD11b+, but not IFN-γR−/−CD11b+, monocytes, suppressed MyHC-α-specific T cells, and abrogated the progressive disease course in IFN-γR−/− mice. Finally, coinjection of MyHC-α-specific, but not OVA-transgenic, IFN-γ-releasing CD4+ Th1 T cell lines, together with MyHC-α-specific Th17 T cells protected RAG2−/− mice from EAM. In conclusion, CD11b+ monocytes play a dual role in EAM: as a major cellular substrate of IL-17-induced inflammation and as mediators of an IFN-γ-dependent negative feedback loop confining disease progression.
Cite
CITATION STYLE
Valaperti, A., Marty, R. R., Kania, G., Germano, D., Mauermann, N., Dirnhofer, S., … Eriksson, U. (2008). CD11b+ Monocytes Abrogate Th17 CD4+ T Cell-Mediated Experimental Autoimmune Myocarditis. The Journal of Immunology, 180(4), 2686–2695. https://doi.org/10.4049/jimmunol.180.4.2686
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.