The protonation state of the catalytic aspartates in plasmepsin II

Citations of this article
Mendeley users who have this article in their library.


Assigning the correct protonation state to the catalytic residues is essential for a realistic modelling of an enzyme's active site. Plasmepsins are pharmaceutically relevant aspartic proteases involved in haemoglobin degradation by Plasmodium spp. In aspartic proteases, one of the two catalytic aspartates is protonated, while the other is negatively charged. Here, multiple explicit-water molecular dynamics simulations of plasmepsin II, uncomplexed and with a hydroxypropylamine peptidomimetic inhibitor, indicate that protonation of Asp214 favours a stable active site structure. Moreover, the protonation state of the catalytic aspartate has a strong influence on a linear chain of hydrogen bonds with the adjacent side chains. © 2007 Federation of European Biochemical Societies.




Friedman, R., & Caflisch, A. (2007). The protonation state of the catalytic aspartates in plasmepsin II. FEBS Letters, 581(21), 4120–4124.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free